

MaRDI – Math, Data, Code

P. Benner, R. Fritze, J. Heiland, <u>C. Himpe</u>, H. Kleikamp, K. Lund,
 T. Mitchell, M. Ohlberger, S. Rave, J. Saak, P. Veluvali, et al.

Algorithmic Challenges for Large-Scale Problems 2022–06–14

MaRDI – <u>Ma</u>thematical <u>R</u>esearch <u>D</u>ata <u>I</u>nitiative

What is MaRDI?

- ► Why MaRDI?
- ► How does MaRDI work?

MaRDI and Me

- Applied Mathematician
- Research Topic: Model Reduction
- Recent Application: Gas Networks
- Open Science Supporter
- Pet Peeve: (Un-)Availability
- MaRDI staff @ WWU Münster

What is MaRDI?

NFDI – Nationale Forschungsdateninfrastruktur

- Non-profit organisation,
- for data from science and research,
- ▶ to access, network, and make data usable.
- Aim: create permanent digital repository.
- Consists of consortia.

NFDI Consortia

MaRDI Consortium

- Started November 2021
- 1 of 30 NFDI consortia
- ▶ 15 Institutions plus partners
- THE math consortium

Why MaRDI?

State of Affairs

Non-Algorithmic Challenges for Large-Scale Problems

- Math Knowledge
- CSV Data
- Source Code

Why should we care (more)?

Math

- Enter field
- Efficiently find
- Keep up-to-date
- Visibly contribute
- Handle quantity

Data

- Reference results
- Benchmark data-sets
- Aggregate data
- Secondary uses
- Better visualizations

6, 2, 8, 3, . . .

Code

- Document algorithm
- Reproduce results
- Reuse to build upon
- Reuse to compare against
- Learn from implementation

FAIR Research Data

Findable

- Accessible
- Interoperable
- Reusable

By: Scriberia, CC-BY 4.0, doi:10.5281/zenodo.3332807

(Mathematical) Software

Replicability, Reproducibility, Reusability:

J. Fehr, J. Heiland, C. H., J. Saak: Best Practices for Replicability, Reproducibility and Reusability of Computer-Based Experiments Exemplified by Model Reduction Software; AIMS Mathematics 1(3): 261–281, 2016. doi:10.3934/Math.2016.3.261

Sustainable Scientific Software:

J. Fehr, C. H., S. Rave, J. Saak: Sustainable Research Software Hand-Over; Journal of Open Research Software 9(1): 5, 2021. doi:10.5334/jors.307

By: S. Rave, CC-BY 4.0, doi:10.5334/iors.307

How does MaRDI work?

Task Areas

та 1	Task Area 1: Computer Algebra
та 2	Task Area 2: Scientific Computing*
TA 3	Task Area 3: Statistics and Machine Learning
	Task Area 4: Interdisciplinary Mathematical Research
TA 5	Task Area 5: The MaRDI Portal
та <mark>6</mark>	Task Area 6: Data Culture and Community Integration
та 7	Task Area 7: Governance and Consortium Management

Task Area 2: Scientific Computing

- Measure 1: Algorithm Knowledge Graph
- Measure 2: Open Interfaces
- Measure 3: Benchmark Framework
- Measure 4: CSE Workflows

Measure 4: CSE Workflows

Goal: Documenting Chained Algorithms

- Lab notebook for computer experiments
- Standardized workflow notation
- Synchronized with engineering sciences
- Machine readable format
- Example: Uncertainty Quantification

Measure 3: Benchmark Framework

Goal: Comparing Algorithm Implementations

- ► Fair comparisons and automated testing (specifically for publications)
- Provide scaffolding (just add algorithms, benchmarks and measures)
- ► Local and central service (try at home first, then upload)
- Assess results (highscores, rankings)
- ▶ For: Linear Solvers, Matrix Equations, Model Reduction, ...

Measure 3: Benchmark Framework (cont.)

How does it help fairness and FAIRness?

- Competitor implementations (R)
- Seamless data handling (I)
- Standard measurements (A)
- Decision aid (F)
- Find the right tool for a job

Measure 2: Open Interfaces

Goal: Coupling Algorithms Seamlessly

- Standard interfaces for numerical libraries
- Provide interface definitions and wrappers
- Handle language barriers
- Coordinate data flow and exchange
- ▶ For: Linear Solvers, ODE Solvers, PDE Solvers, ...

Measure 2: Open Interfaces (cont.)

Focus: Interoperability

- Abstraction: problem specific interfaces
- Intermediate language: C
- Back-end handles data: via files or memory
- ► Long term: language interfaces are generated from specification
- Example: BLAS / LAPACK \rightarrow FlexiBLAS

Measure 1: Algorithm Knowledge Graph

Goal: Contextualize Numerical Algorithms

- Easily searchable semantic web of algorithm meta-data
- Connect algorithms with publications, implementations, problems
- Build comprehensive and unbiased algorithm meta-data database
- Community driven expansion and curation
- ► For: *Numerical Algorithms*

- ► What exactly is a knowledge graph? → A list of subject-predicate-object statements.
- ► What are subject, predicate, and object? → All are URIs with meaning, like a URI for "algorithm".
- $\label{eq:holdson} \blacktriangleright \mbox{ What makes a knowledge graph powerful?} \rightarrow \mbox{ An enforced ontology.}$
- What is an ontology?
 - \rightarrow A vocabulary plus a grammar.
- ▶ Can you give an example statement? \rightarrow al:SVD a :algorithm .

- ► What exactly is a knowledge graph? → A list of subject-predicate-object statements.
- ► What are subject, predicate, and object? → All are URIs with meaning, like a URI for "algorithm".
- ► What makes a knowledge graph powerful? → An enforced ontology.
- What is an ontology?
 - \rightarrow A vocabulary plus a grammar.

- ► What exactly is a knowledge graph? → A list of subject-predicate-object statements.
- ► What are subject, predicate, and object? → All are URIs with meaning, like a URI for "algorithm".
- ► What makes a knowledge graph powerful? → An enforced ontology.
- What is an ontology?
 - \rightarrow A vocabulary plus a grammar.
- ► Can you give an example statement? → al:SVD http://www.w3.org/1999/02/22-rdf-syntax-ns#type :algorithm .

- ► What exactly is a knowledge graph? → A list of subject-predicate-object statements.
- ► What are subject, predicate, and object? → All are URIs with meaning, like a URI for "algorithm".
- ► What makes a knowledge graph powerful? → An enforced ontology.
- What is an ontology?
 - \rightarrow A vocabulary plus a grammar.
- ▶ Can you give an example statement? \rightarrow al:SVD a https://mardi4nfdi.de/algodata/0.1#algorithm .

- ► What exactly is a knowledge graph? → A list of subject-predicate-object statements.
- ► What are subject, predicate, and object? → All are URIs with meaning, like a URI for "algorithm".
- $\label{eq:holdson} \blacktriangleright \mbox{ What makes a knowledge graph powerful?} \rightarrow \mbox{ An enforced ontology.}$
- What is an ontology?
 - \rightarrow A vocabulary plus a grammar.
- ▶ Can you give an example statement? \rightarrow al:SVD a :algorithm .

A First Look at the Prototype Front-End

👴 🔋 🧧 🖁 AlgoData Home Documentation
Algorithm Knowledge Graph
1. Topic: (Select topic) V
2. Query: What (Waiting for topic) v (Waiting for subject) v (Waiting for predicate) v ?
AlgoData (Algorithm Knowledge Graph) — A <u>MaRDI</u> (MAthematical Research Data Initiative) Measure

🕺 🔋 🔋 🔒 AlgoData	Home Documentation
Algorith	m Knowladza Csanh
Algorithi	II Kilowledge drapit
1. Topic: Numer	cal Linear Algebra 👻
2. Query: What	(Select subject) v (Waiting for subject) v (Waiting for predicate) v ?
AlgoData (Algorithm I	<nowledge <u="" a="" graph)="" —="">MaRDI (MAthematical Research Data Initiative) Measure</nowledge>

8 R AlgoData Home Documentation
1. Topic: Numerical Linear Algebra V
2. Query: What (Select subject) (Waiting for subject) (Waiting for subject) (Select subject) Algorithm Benchmark Problem Publication Software (Waiting for subject) (Waiting for predicate) ?
AlgoData (Algorithm Knowledge Graph) — A <u>MaRDI</u> (MAthematical Research Data Initiative) Measure

M R AlgoData Home Documentation
1. Topic: Numerical Linear Algebra
2. Query: What Algorithm V (Select predicate) V (Waiting for predicate) V ?
AlgoData (Algorithm Knowledge Graph) — A MaRDI (MAthematical Research Data Initiative) Measure

M R AlgoData Home Documentation
Algorithm Knowledge Graph 1. Topic: Numerical Linear Algebra 2. Query: What Algorithm (Select predicate) (Walting for predicate) ? (Select predicate) has component has component of
is implemented by is related to is subclass of solves AlgoData (Algorithm Knowledge Graph) — A <u>MaRDI (</u> MAthematical Research Data Initiative) Measure

AlgoData Home Documentation
Algorithm Knowledge Graph
2. Query: What Algorithm v solves v (Select object) v ?
AlgoData (Algorithm Knowledge Graph) — A MaRDI (MAthematical Research Data Initiative) Measure

🚷 🔋 AlgoData Home Documentation	
Algorithm Knowledge Gra 1. Topic: Numerical Linear Algebra 2. Query: What Algorithm Solves	(Select object) ? (Select object) ? (Select object) Eigenvalue Problem (Av = lv) Linear Problem (Ax = b) Matrix Orthogonalization Preconditioning a Linear Problem Saddle Point Problem Symmetric Positive-Definite Linear Problem
AlgoData (Algorithm Knowledge Graph) — A <u>MaRDI</u> (MAthemat	ical Research Data Initiative) Measure

AlgoData Home Documentation
Algorithm Knowledge Graph
1. Topic: Numerical Linear Algebra 🗸
2. Query: What Algorithm v solves v Linear Problem (Ax = b) v ?
What Algorithm solves Linear Problem (Ax = b) ?
→ Biconjugate Gradients (About)
→ Biconjugate Gradients Stabilized (About)
→ Biconjugate Gradients Stabilized (2) (About)
AlgoData (Algorithm Knowledge Graph) — A <u>MaRDI</u> (MAthematical Research Data Initiative) Measure

What Algorithm solves Linear Problem (Ax = b) ?	
\rightarrow Biconjugate Gradients (About)	
ightarrow Biconjugate Gradients Stabilized (About)	
\rightarrow Biconjugate Gradients Stabilized (2) (About)	
\rightarrow Biconjugate Gradients Stabilized (l) (About)	
\rightarrow Cholesky Decomposition (About)	
→ Gradient Descent (About)	
→ Generalized Minimal Residual (About)	
→ Jacobi Method (About)	
→ LU decomposition (About)	
→ Crout Inner Product Gaussian Elimination (About)	
lgoData (Algorithm Knowledge Graph) — A <u>MaRDI</u> (MAthematical Research Data Initiative) Measure	

Cholesky Decomposition 5
has subclass: gaxpy Cholesky Factorization (About)
has subclass: Outer Product Cholesky Factorization (About)
is analyzed in: Higham (2002) Accuracy and Stability of Numerical Algorithms
is implemented by: <u>Armadillo - C++ library for linear algebra & scientific computing</u> (About)
is implemented by: <u>ARMAS - Another Rewrite of Matrix Algebra Subroutines</u> (About)
is implemented by: Eigen (About)
is implemented by: <u>Cinkgo - A high performance numerical linear algebra library</u> (About)
is implemented by: <u>LAPACK - Linear Algebra PACKage</u> (About)
is implemented by: MAGMA - Matrix Algebra on GPU and Multicore Architectures (About)
is implemented by: PLASMA - Parallel Linear Algebra Software for Multicore Architectures (About)
lgoData (Algorithm Knowledge Graph) — A <u>MaRDI</u> (MAthematical Research Data Initiative) Measure

is i	nvented in: Benoit (1924) Note Sur Une Méthode de Résolution des équations Normales Provenant de L'Application Aéthode des Maindres Cassée a un Système Diéguations Linéaires en Nombre Diférique a Calui des Incongress
Applic	ation de la Méthode à la Résolution D'un Système Defini D'équations Linéaires
is r	eviewed in: Atkinson (1991) An Introduction to Numerical Analysis
is r	eviewed in: Epperson (2013) An Introduction to Numerical Methods and Analysis
is r	eviewed in: Golub, Van Loan (2013) Matrix Computations
is r	eviewed in: Greenbaum (1997) Iterative Methods for Solving Linear Systems
is r	eviewed in: Quarteroni, Sacco, Saleri (2007) Numerical Mathematics
is r	eviewed in: Trefethen, Bau (1997) Numerical Linear Algebra
is s	tudied in: Volkov, Demmel (2008) Benchmarking GPUs to tune dense linear algebra
sol	ves: Linear Problem (Ax = b) (About)
use	s: Minimum Degree Algorithm (About)

AlgoData (Algorithm Knowledge Graph) — A <u>MaRDI</u> (MAthematical Research Data Initiative) Measure

MaRDI and You

- Portal: portal.mardi4nfdi.de
- Twitter: @mardi4nfdi
- Newsletter: Coming Soon
- Reading:

C. Görgen, R. Sinn: Mathematik in der Nationalen Forschungsdateninfrastruktur: DMV Mitteilungen 29(3): 122-123, 2021. doi:10.1515/dmvm-2021-0049

Harigation Main page Decent changes Fordors page

▶ P. Benner, M. Burger, D. Göddeke, C. Görgen, C. H., M. Hintermüller, J. Heiland, T. Koprucki, M. Ohlberger, S. Rave, M. Reidelbach, J. Saak, A. Schöbel, K. Tabelow, M. Weber: Die Mathematische Forschungsdateninitiative in der NFDI: MaRDI; GAMM-Rundbrief 2022(1): 40-43, 2022. gamm-ev.de/publikationen/gamm-rundbriefe

1st MaRDI Workshop on Scientific Computing

2022-10-26 - 2022-10-28 Münster https://workshop.mardi.ovh

Christian Himpe

Summary

- MaRDI: Make math FAIR
- Knowledge Graph (TA2-M1)
- Open Interfaces (TA2-M2)
- Benchmark Framework (TA2-M3)
- CSE Workflows (TA2-M4)
- Slides at: https://himpe.science

https://mardi4nfdi.de

Supported by the German Research Foundation (Deutsche Forschungsgemeinschaft), No.: 460135501. NFDI 29/1 "MaRDI – Mathematische Forschungsdateninitiative".

My Questions:

Do you have a mathematical research data story?

► Do you have an issue MaRDI could improve?

► How can CRC1456 and MaRDI cooperate?